CETIFICATION

SDG No:

JC20466

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken May 17, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List (1,4-Dioxane and Naphthalene were analyzed following the SIM technique); TCL pesticides list; and for low molecular weight alcohols (LMWA) the results were reported under SDG No.: JC20466. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC20466-1	RA3-GWD	Groundwater	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20466-2	RA3D-GWD	Groundwater	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA
JC20466-3	RA3D-GWS	Groundwater	ABN TCL special list; 1,-4- dioxane and Naphthalene (SIM); LMWA

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 11, 2016

Report of Analysis

Page 1 of 3

Client Sample ID: RA3-GWD Lab Sample ID: JC20466-1

Matrix:

AQ - Ground Water SW846 8270D SW846 3510C Date Sampled: 05/17/16 Date Received: 05/18/16

Q

Method: Project:

BMSMC, Building 5 Area, PR

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	3P53566.D	1	05/19/16	SB	05/18/16	OP94042	E3P2439
Run #2	M124570.D	5	05/19/16	AN	05/18/16	OP94042	EM5273

	Initial Volume	Final Volume
Run #1	920 ml	1.0 ml
Run #2	920 ml	1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.4	0.89	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.97	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.97	ug/l
	3&4-Methylphenol	ND	2.2	0.96	ug/l
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	5.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.43	ug/I
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1:1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.49	ug/l
100-52-7	Benzaldehyde	ND	5.4	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l
					4.0

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: RA3-GWD Lab Sample ID:

Matrix:

Method:

Project:

JC20466-1

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis (2-Chloroethoxy) methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.60	ug/I	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
123-91-1	1,4-Dioxane	233 a	5.4	3.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.54	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/I	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	1.0	1.1	0.29	ug/l	J
91-57-6	2-Methylnaphthalene	1.2	1.1	0.23	ug/l	-
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.70	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	11000123
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/l	LOCALD OC
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	Ser .
129-00-0	Pyrene	ND	1.1	0.24	ug/l	3
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	" ifael Infante
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	-	Méndez IC = 1888
367-12-4	2-Fluorophenol	44%	38%	14-8	8%	CO LICENCIAIS

Report of Analysis

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: RA3-GWD Lab Sample ID: JC20466-1

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16 Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	26%	26%	10-110%
118-79-6	2,4,6-Tribromophenol	88%	96%	39-149%
4165-60-0	Nitrobenzene-d5	71%	74%	32-128%
321-60-8	2-Fluorobiphenyl	77%	79%	35-119%
1718-51-0	Terphenyl-d14	99%	76%	10-126%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Analytical Batch

E3M2897

Report of Analysis

Client Sample ID: RA3-GWD

Lab Sample ID: Matrix:

Method:

Project:

JC20466-1

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

Q

File ID DF Analyzed By Prep Date Prep Batch Run #1 3M61525.D 1 05/22/16 LK 05/20/16 OP94102A

Run #2

Initial Volume Final Volume Run #1 980 ml 1.0 ml

Run #2

CAS No. Compound RL Result MDL Units 91-20-3 Naphthalene 0.271 0.100.030 ug/l CAS No. Surrogate Recoveries Run#1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 77% 24-125% 321-60-8 2-Fluorobiphenyl 87% 19-127% 1718-51-0 Terphenyl-d14 55% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: RA3-GWD

Lab Sample ID: Matrix:

Method:

Project:

JC20466-1

AQ - Ground Water SW846-8015C (DAI) Date Sampled: 05/17/16 Date Received: 05/18/16

BMSMC, Building 5 Area, PR

Percent Solids: n/a

							_ -
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	GH105070.D	1	05/19/16	XPL	n/a	n/a	GGH5291
Run #2							

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/I	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	86%		56-1	45%	
111-27-3	Hexanol	87%			45%	

ND = Not detected

 $MDL = Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: RA3D-GWD Lab Sample ID: JC20466-2

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

Q

File ID DF Analyzed Prep Date **Analytical Batch** Ву Prep Batch Run #1 3P53567.D 1 05/19/16 SB 05/18/16 OP94042 E3P2439 Run #2 M124571.D 5 05/19/16 AN 05/18/16 OP94042 EM5273

Initial Volume Final Volume Run #1 920 ml 1.0 ml Run #2 920 ml 1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.4	0.89	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	0.97	ug/L
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	2.7	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	1.4	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.97	ug/l
	3&4-Methylphenol	ND	2.2	0.96	ug/I
88-75-5	2-Nitrophenol	ND	5.4	1.0	ug/l
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l
87-86-5	Pentachlorophenol	ND	5.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.43	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.6	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.4	1.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.0	ug/l
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l
98-86-2	Acetophenone	ND	2.2	0.23	ug/l
120-12-7	Anthracene	ND	1.1	0.23	ug/l
1912-24-9	Atrazine	ND	2.2	0.49	ug/I
100-52-7	Benzaldehyde	ND	5.4	0.31	ug/l
56-55-3	Benzo(a)anthracene	ND	1,1	0.22	ug/l
50-32-8	Benzo(a)pyrene	ND	1.1	0.23	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.37	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.44	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.50	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.23	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.37	ug/l
86-74-8	Carbazole	ND	1.1	0.25	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: RA3D-GWD

Lab Sample ID:

JC20466-2

Matrix: Method: AQ - Ground Water

Method: Project: SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16 Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.71	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.30	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.27	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.44	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.40	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.60	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.52	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.55	ug/l	
123-91-1	1,4-Dioxane	236 a	5.4	3.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.36	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.54	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.35	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.53	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.0	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.42	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.36	ug/l	
78-59-1	Isophorone	ND	2.2	0.30	ug/l	
90-12-0	1-Methylnaphthalene	0.89	1.1	0.29	ug/l	j
91-57-6	2-Methylnaphthalene	0.98	1.1	0.23	ug/l	j
88-74-4	2-Nitroaniline	ND	5.4	0.30	ug/l	-
99-09-2	3-Nitroaniline	ND	5.4	0.42	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.48	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.70	ug/l	1000
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.52	ug/l	COCHOO AS
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.24	ug/l	OBE .
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	
129-00-0	Pyrene	ND	1.1	0.24	ug/l	fael Infante
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.40	ug/l	Méndez 10 = 1888
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its	COLICENCY
367-12-4	2-Fluorophenoi	43%	39%	14-8	8%	LICENS

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: RA3D-GWD

Lab Sample ID: Matrix:

JC20466-2

Method: Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	25%	23%	10-110%
118-79-6	2,4,6-Tribromophenol	83%	92%	39-149%
4165-60-0	Nitrobenzene-d5	67%	62%	32-128%
321-60-8	2-Fluorobiphenyl	74%	77%	35-119%
1718-51-0	Terphenyl-d14	95%	75%	10-126%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: RA3D-GWD Lab Sample ID: JC20466-2

Matrix:

Method:

Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: Date Received:

05/17/16 05/18/16

Percent Solids:

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 3M61526.D 1 05/22/16 LK 05/20/16 OP94102A E3M2897

Run #2

Initial Volume Final Volume Run #1 900 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q 91-20-3 Naphthalene 0.188 0.11 ug/l 0.033 CAS No. Surrogate Recoveries Run#1 Run#2 Limits

84% 4165-60-0 Nitrobenzene-d5 24-125% 321-60-8 2-Fluorobiphenyl 95% 19-127% 1718-51-0 Terphenyl-d14 73% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: **RA3D-GWD** Lab Sample ID: JC20466-2

Matrix: Method:

Project:

AQ - Ground Water SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

05/17/16 Date Sampled: Date Received: 05/18/16

Percent Solids:

File ID Analyzed DF By **Analytical Batch** Prep Date Prep Batch Run #1 GH105071.D 05/19/16 XPL n/a **GGH5291** n/a

Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	97%		56-1	45%	
111-27-3	Hexanol	103%		56-1	45%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

Client Sample ID: RA3-GWS Lab Sample ID: JC20466-3

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 3P53568.D 1 05/19/16 SB 05/18/16 OP94042 E3P2439 Run #2 M124572.D 10 05/19/16 AN 05/18/16 OP94042 EM5273

Initial Volume Final Volume Run #1 900 ml 1.0 ml Run #2 900 ml 1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q	
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l		
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l		
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l		
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l		
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/I		
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l		
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l		
	3&4-Methylphenol	ND	2.2	0.98	ug/l		
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l		
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l		
87-86-5	Pentachlorophenol	ND	5.6	1.5	ug/l		
108-95-2	Phenol	ND	2.2	0.44	ug/l		
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l		
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l		
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l		
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l		
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l		
98-86-2	Acetophenone	ND	2.2	0.23	ug/l		
120-12-7	Anthracene	ND	1:1	0.23	ug/l		
1912-24-9	Atrazine	ND	2.2	0.50	ug/l		
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l		SOCIODA
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l		and the same of th
50-32-8	Benzo(a)pyrene	ND	1.1	0.24	ug/l		The Infinite
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l		
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l		Méndez
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l		I TOOM
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l		LINCO LICENCINO
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l		MCQ. LOENG!
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l		ULICER
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l		
106-47-8	4-Chloroaniline	0.91	5.6	0.38	ug/l	J	
86-74-8	Carbazole	ND	1.1	0.25	ug/l	-	
					4.5		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

18 of 666

ACCUTEST

Report of Analysis

Client Sample ID: RA3-GWS

Lab Sample ID: JC20466-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16 Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.72	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
123-91-1	1,4-Dioxane	658 a	11	7.3	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1:1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l	
78-59- 1	Isophorone	ND	2.2	0.31	ug/l	
90-12-0	1-Methylnaphthalene	1.1	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	1.0	1.1	0.23	ug/l	I
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l	_
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	
129-00-0	Pyrene	ND	1.1	0.24	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	42%	38%	14-8	8%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: RA3-GWS Lab Sample ID: JC20466-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16 Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	25%	19%	10-110%
118-79-6	2,4,6-Tribromophenol	77%	84%	39-149%
4165-60-0	Nitrobenzene-d5	72%	58%	32-128%
321-60-8	2-Fluorobiphenyl	80%	84%	35-119%
1718-51-0	Terphenyl-d14	88%	70%	10-126%

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID:	RA3-GWS
Lab Sample ID:	TC20466-3

Matrix:

AQ - Ground Water

Method: Project:

SW846 8270D BY SIM SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 05/17/16 Date Received: 05/18/16

Percent Solids:

Q

<u> </u>	· · · · · ·						
1	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3M61527.D	1	05/22/16	LK	05/20/16	OP94102A	E3M2897
Run #2							

Initial Volume 920 ml

Final Volume 1.0 ml

Run #1 Run #2

CAS No.	Compound	Result	RL	MDL Units	
91-20-3	Naphthalene	0.367	0.11	0.032 ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits	
4165-60-0	Nitrobenzene-d5	86%		24-125%	
321-60-8	2-Fluorobiphenyl	90%		19-127%	
1718-51-0	Terphenyl-d14	71%		10-119%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

Page 1 of 1

Client Sample ID: **RA3-GWS** Lab Sample ID: JC20466-3

File ID

GH105072.D

Matrix:

AQ - Ground Water

DF

Date Sampled: 05/17/16 Date Received: 05/18/16

Method:

SW846-8015C (DAI)

Percent Solids:

Project:

BMSMC, Building 5 Area, PR

Analytical Batch Prep Batch

Run #1 Run #2 Analyzed 05/19/16 XPL Prep Date n/a

n/a

Q

GGH5291

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units
64-17-5	Ethanol	ND	100	55	ug/l
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l
67-56-1	Methanol	ND	200	71	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
111-27-3	Hexanol	99%		56-1	45%
111-27-3	Hexanol	101%			45%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS	ACCUTEST	-NJ 2255	N OF SGS Accuses Rouse 130, Day 29-0200 FAX	Dayson non, NJ 01 732-329	LSIO				and the same of th	ďla	195	ĖBZĒ	5		PAGE	3/10	_ 8)	
	MARKET LAND			A CONTRACT		10	· \$11			i de	1	1964	200		- to	200	ALC: N	Matrix Codes
Anderson Molhelland A	ssociac Bi	Ms Release	Asses	5 Ma	nt .				700		0	2						DVF - Drinking Vsa GW - Ground Wat
2700 West chest	er som		States Intern		The state of the s	errere Papa	ri to)	e(* ^^ ≥ 2	22	5	80818							WW - Water BW - Surface Wat SD - Soil
Purchase NY	Hu	nacao PR	Company Nen						F	80158	3	Q				-		SED-Endment DE - Od
Terry Taylor	E-mail Proact8		Strong Address		-				ctho	I	3	7						LIQ - Other Lapa AIR - Air SOL - Other Son
914-257-0	400° Charles	E Grow F	Cay		Piles			Zφ	ĪΣ	Method	7	60						WH - Wipe FB-Field Blank
V. River, T. Taylor, D.	Lindstran	10*	Adentor						اي		go.							CB-Equipment Bir FIS- Rinse Blant TB-Trp (illum).
	POPULATION IN THE PROPERTY OF	Catedini		T	1	arear at		17	18	LMA-	Pestic	3						
Field (D / Point of Collectio	g MRCHIDI VIII	1 7 1 1	Salayand Ma	- Parjus	무당	12 ST	POR I	MICH	N	1	ط	<u> </u>					L	LAB USE ON
/ RA3-6W		05/17/4 0945	11 G	W 5	3	Ц.	7		X	X		X	\vdash			1-	_	E 55
RA3D-6	Řρ.	05/17/16 0953 05/17/16 12-15	11 G	1 5	9	H	2		X	X	-	X Y	+-	-		+	\vdash	1121
NA3-UW		12/1/10/14/2	11.0	-														100
				+		-	H		-	-	$\vdash \vdash$	+	\vdash			+	\vdash	1127
			++	+	+++		-		+	\vdash	\vdash	-	┼-			┿	\vdash	-
					\pm													
			,	+		-	-		-	-	\vdash	+	 			+	1	
			++	+	1	H	H			\vdash	\vdash		1.17	ITIA	ASESS	MENT	1	70
						Ш.								L	VEHIC			2
Turnment Tem (Business 6	Amend B. O	Andrew Control	[] Com	named "A"	Ca Delivers (Level 1)	phylip levi	<u> </u>	YAEP C	A graph	4	ΛŢ	ا بدا	_		Special Ires		_	Hhalene
Stat. 19 Business Coys For	Soil Sorples		200	iorctol "B" (1 Lovel 3	Lavel 2) +4.)		።	lete Form	ingary II 19		tilli-				10the			
C 2 Day PUZNI				entitle) "C"			۵۰	DO Fore	-			<i>y</i> 3	100		11-40	02	-0	
1 Story BUSH FOF Q 910	US SOMPLES			tops of Kros 7 + Results I		marcal '	B" = Flor		Survey	,	_							
7.		Sample Corrody must be docu	M.I Renaced			y - Par change			cluding	courier	deliberry		7,11	3,000	upon reci	ept in l	no Lat	oratory
Marine	05/17/8 150	FedE	X		2	about Dy	PE	=0	人			119/14	10 K	2	1	2		
The State of States	Omo Ther:	Samuel By:			4	Aut :					-	- 17	****	4	d By: /	han.		r Tomp.
Returnished by:	pass Ylma.	S			7	7		rry	Hat Pa	d	~					<u> </u>	Comple	4.5

JC20466: Chain of Custody

Page 1 of 2

EXECUTIVE NARRATIVE

SDG No:

JC20466

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Three (3) samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 —Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings: Major findings:

None None

Minor findings:

1. Initial and continuing calibration verifications meet the required criteria. Analytes not meeting the method % difference criteria meet the guidance document performance criteria for continuing calibration verification of \pm 25 or 40 %, no action taken. No closing calibration verification included in data package. No action taken, professional judgment.

Analytes not meeting the continuing calibration verification criteria of the guidance document (hexachlorobutadiene; 4-nitrophenol; and indeno(1,2,3-cd)pyrene) were qualified UJ in samples JC20466-1; JC20466-2; and JC20466-3.

2. MSMSD % recovery outside control limits for several analytes in JC20413-1MS/MSD. No action taken, MS/MSD results apply to the unspiked sample. Unspiked sample was from another project.

No MS/MSD results included for samples analyzed by the SIM technique. No action taken, blank spike/blank spike duplicate used to assess accuracy.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

June 11, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC20466-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016 Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.4	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.4	ug/l	1	-	Ų	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	Ų	Yes
2,4-Dimethylphenol	5.4	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.4	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	UJ	Yes
Pentachlorophenol	5.4	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	S 1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	en e	U	Yes
1,1'-Biphenyl	1.1	ug/i	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.4	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes

bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	120	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	24	U	Yes
1,4-Dioxane	233	ug/l	5		•	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.4	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	_	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	14	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	U	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	12	UJ	Yes
Hexachlorocyclopentadiene	11	ug/l	1	+	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	UJ	Yes
Isophorone	2.2	ug/l	1	200	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	J	UJ	Yes
2-Methylnaphthalene	1.2	ug/l	1	-	-	Yes
2-Nitroaniline	5.4	ug/l	1	-	U	Yes
3-Nitroaniline	5.4	ug/l	1	2	U	Yes
4-Nitroaniline	5.4	ug/l	1	17	U	Yes
Nitrobenzene	2.2	ug/l	1	1.7	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	14	U	Yes
Nitrosodiphenylamine	5.4	ug/l	1		U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	12	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	17	U	Yes
METHOD:	0270D /cii	١.٨١				
Naphthalene	0.271	ug/l	1	_		Yes
rapilitialelle	U.Z/I	ug/ i	1	, T	<i>5</i> 4	162

Sample ID: JC20466-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016 Matrix: Groundwater

METHOD: 8270D

METHOD:	82700					
Analyte Name	Result		Dilution Factor	Lab Flag		•
2-Chlorophenol	5.4	ug/l	1	-	Ų	Yes
4-Chloro-3-methyl phenol	5.4	ug/i	1	-	Ų	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.4	ug/l	1	•	U	Yes
2,4-Dinitrophenol	11	ug/l	1	**	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.4	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	UJ	Yes
Pentachlorophenol	5.4	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.4	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	•	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.4	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	_	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes

2,4-Dinitrotoluene	1.1	ug/l	1		U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	236	ug/l	5	2	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.4	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1 =:	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	-	U	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1		1	Yes
Fluoranthene	1.1	ug/l	1	-	1	Yes
Fluorene	1.1	ug/l	1	-	J	Yes
Hexachlorobenzene	1.1	ug/l	1	-	Ų	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	UJ	Yes
Hexachlorocyclopentadiene	11.0	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	~	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	UJ	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	0.89	ug/i	1	J	UJ	Yes
2-Methylnaphthalene	0.98	ug/l	1	J	UJ	Yes
2-Nitroaniline	5.4	ug/i	1	-	U	Yes
3-Nitroaniline	5.4	ug/l	1	-	U	Yes
4-Nitroaniline	5.4	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1		U	Yes
Nitrosodiphenylamine	5.4	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	_	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1		U	Yes
METHOD:	8270D (SII	V 1)				
Naphthalene	0.188	ug/l	1		-	Yes

Sample ID: JC20466-3

. . . .

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016 Matrix: Groundwater

METHOD: 8270D

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	•	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	•	UJ	Yes
Pentachlorophenol	5.6	ug/l	1	-	U	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	1.1	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	Ų	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	0.91	ug/l	1	1	UJ	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	U	Yes

2,4-Dinitrotoluene	1.1	ug/l	1	100	U	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	2	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
1,4-Dioxane	688	ug/l	10	-	-	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	~	U	Yes
Dibenzofuran	5.6	ug/l	1	~	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	_	U	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	U	Yes
Diethyl phthalate	2.2	ug/l	1	7.7	U	Yes
Dimethyl phthalate	2.2	ug/l	1	_	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	1	Yes
Fluoranthene	1.1	ug/l	1	-	}	Yes
Fluorene	1.1	ug/l	1	-	j	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1		UJ	Yes
Hexachlorocyclopentadiene	11.0	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	UJ	Yes
Isophorone	2.2	ug/l	1	17.7	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	-	Yes
2-Methylnaphthalene	1.0	ug/l	1	J	וח	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1		U	Yes
NACTION:	02700 /01	\ A\				
	8270D (SII 0.367	•	1			Voc
Naphthalene	0.30/	ug/l	1	7	.71	Yes

Rejected data Estimated nondetect

Date:___June_11_2016_

R-

UJ-

Reviewer:

	Project Number:_JC20466
	Date:May_17,_2016
	Shipping Date:May_17,_2016
	EPA Region:2_
REVIEW OF SEMIVOLATILE O	PRGANIC PACKAGE
The following guidelines for evaluating volatile orgulation actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous W 2015—Revision 0. Semivolatile Data Validation. The Quon the data review worksheets are from the prima noted.	eviewer in using professional judgment to the needs of the data users. The sample a validation guidance documents in the laste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance dat included:	data package received has been a summarized. The data review for SVOCs
Lab. Project/SDG No.:JC20466 No. of Samples:3_Full_scan/3_SIM	Sample matrix: _Groundwater
Trip blank No.:	
Field blank No.:	
Equipment blank No.:	
Field duplicate No.:JC20466-1/JC20	466-2
X Data CompletenessX Holding TimesX GC/MS Tuning	X Laboratory Control SpikesX Field Duplicates X Calibrations
X Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_ABN_TCL_list_by_method_SW846-8 _analyzed_by_method_SW846-8270D_(SIM)	270D;_Naphthalene_and_1,4-Dioxane_
Definition of Qualifiers:	
J- Estimated results U- Compound not detected	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		_
		_

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	pН	ACTION
All samples extracted	d and analyzed wit	hin method recommended ho	lding t	ime. Sample preservation was acceptable.

Cooler temperature	(Criteria: 4 + 2 °C)	: 4.9°C	

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

Table 1. Holding Time Actions for Semivolatile Analyses					
		Ac	tion		
Matrix	Preserved	Criteria	Detected	Non-Detected	
Watti	Treserved	Cinena	Associated	Associated	
			Compounds	Compounds	
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professional judgment		
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous	Yes	≤7 days (for extraction) ≤40 days (for analysis)	No qua	lification	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J in	ΠΊ	
	Yes/No	Grossly Exceeded	J	UJ or R	
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment		
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qualification		
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	J	UJ or R	

All	criteria were met _	_X
Criteria were	not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

_X__ The DFTPP performance results were reviewed and found to be within the specified criteria.

_X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:	

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:04/29/16_(SIM) Instrument ID numbers:GCMS3P Matrix/Level:Aqueous/low				05/17/2016_(SIM) GCMS3M Aqueous/low		
Date of initial calibration:_04/24-25/2016_(Scan) Instrument ID numbers:GCM3E Matrix/Level: Aqueous/low			04/12-13/16;_(Scan) 04/26-27/16_(Scan) GCMSM Aqueous/low			
€						
DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND		SAMPLES AFFECTED

Initial and initial calibration verification meets the method and guidance validation document performance criteria.

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria	Action		
С.пісгы	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	ÜJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ^t
1,4-Dioxane	0.010	40.0	± 40.0	±50.0
Benzaldehyde	0.100	40,0	±40.0	±50.0
Phenol	0.080	20.0	±20.0	±25.0
Bis(2-chloroethyl)ether	0.100	20.0	±20.0	±25,0
2-C'hlorophenol	0.200	20.0	÷ 20.0	±25.0
2-Methylphenol	0.010	20,0	±20.0	±25.0
3-Methylphenol	0.010	20.0	±20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	±25.0	± 50.0
Acetophenone	0.060	20.0	± 20.0	±25,0
4-Methylphenol	0.010	20.0	± 20.0	= 25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	±25.0
Hexachloroethane	0.100	20.0	± 20.0	±25.0
Nitrobenzene	0.090	20.0	±20.0	±25.0
Isophorone	0.100	20.0	±20.0	±25.0
2-Nitrophenol	0.060	20,0	±20.0	=25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	= 50.0
Bis(2-chloroethoxy)methane	0.080	20,0	= 20.0	= 25.0
2,4-Dichlorophenol	0.060	20.0	± 20.0	±25.0
Naphthalene	0,200	20,0	±20.0	= 25.0
4-Chloroaniline	0.010	40.0	±40.0	± 50.0
Hexachtorobutadiene	0.040	20,0	±20.0	= 25.0
Caprolactam	0.010	40.0	±30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20,0	± 20.0	=25.0
Hexachlorocyclopentadiene	0.010	40.0	± 40.0	±50.0
2,4,6-Trichlorophenol	0.090	20,0	=20.0	=25.0
2,4,5-Trichlorophenol	0.100	20,0	±20.0	±25.0
1,1'-Biphenyl	0.200	20.0	± 20.0	= 25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	± 25.0
Dimethylphthalate	0.300	20.0	± 25.0	£25.0
2,6-Dinitrotoluene	0.080	20,0	± 20.0	±25.0
Acenaphthylene	0.400	20.0	± 20.0	±25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	± 20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	±50.0	± 50.0
4-Nitrophenol	0.010	40.0	±40.0	± 50.0
Dibenzofuran	0,300	20.0	±20.0	±25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	±25.0
Diethylphthalate	0.300	20.0	= 20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	±20.0	£25.0
4-Chlorophenyl-phenylether	0,100	20.0	± 20.0	± 25.0
Fluorene	0.200	20.0	± 20.0	±25.0
4-Nitroaniline	0.010	40.0	± 40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40,0	± 30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	±25.0
Hexachlorobenzene	0.050	20.0	± 20.0	£25.0
Atrazine	0.010	40.0	£25.0	± 50.0
Pentachlorophenol	0.010	40.0	± 40.0	± 50.0
Phenanthrene	0.200	20.0	±20.0	± 25.0
Anthracene	0.200	20.0	± 20.0	£25.0
Carbazole	0.050	20.0	- 20.0	±25.0
Di-n-buty/phthalate	0.500	20,0	±20.0	±25.0
Fluoranthene	0.100	20.0	±20.0	£25.0
Pyrene	0.400	20.0	±25.0	±50.0
Butylbenzylphthalate	0.100	20.0	±25.0	±50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D ¹
3,3'-Dichlorobenzidine	0.010	40.0	=40.0	±50.0
Benzo(a)anthracene	0.300	-20.0	± 20.0	±25.0
Chrysene	0,200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	± 25.0	± 50.0
Di-n-octylphthalate	0.010	40,0	±40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	±50.0
Benzo(k)fluoranthene	0.010	20.0	± 25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	= 25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	± 30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	±20.0	± 50.0
Naphthalene	0.600	20.0	± 25.0	£25.0
2-Methylnaphthalene	0.300	20.0	± 20.0	±25.0
Acenaphthylene	0.900	20.0	= 20.0	±25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20.0	±25.0	±50.0
Phenanthrene	0.300	20.0	= 25.0	= 50.0
Anthracene	0.400	20.0	± 25.0	± 50.0
Fluoranthene	0.400	20.0	± 25.0	± 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	= 25.0	= 50.0
Chyrsene	0.400	20.0	= 25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	± 25.0	- 50.0
ndeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	= 50.0
Dibenzo(a,h)anthracene	0.010	25.0	±40.0	±50.0
Benzo(g,h,i)perylene	0.020	25.0	±40.0	± 50.0

DATA REVIEW WORKSHEETS

Pentachlorophenol	0.010	40.0	- 50.0	± 50.0
Deuterated Monitoring Compounds				

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Closing Maximum %Đ
1,4-Dioxane-d _*	0.010	20.0	±25.0	± 50.0
Phenol-d ₅	0.010	20.0	± 25.0	±25.0
Bis-(2-chloroethyl)ether-d _x	0.100	20.0	±20.0	±25.0
2-Chlorophenol-d ₄	0.200	20.0	±20.0	± 25.0
4-Methylphenol-d ₈	0.010	20.0	= 20.0	±25.0
4-Chloroaniline-d₄	0.010	40.0	± 40.0	± 50.0
Nitrobenzene-d ₅	0.050	20.0	± 20.0	±25.0
2-Nitrophenol-d ₄	0.050	20.0	±20.0	±25.0
2,4-Dichlorophenol-d:	0.060	20.0	± 20,0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	= 20.0	±25.0
Acenaphthylene-d ₈	0.400	20.0	± 20.0	± 25.0
1-Nitrophenol-d ₁	0.010	40.0	±40.0	± 50.0
Fluorene-d ₁₀	0,100	20.0	= 20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	= 30.0	± 50.0
Anthracene-d ₁₀	0,300	20.0	± 20.0	± 25.0
Pyrene-d _{in}	0,300	20.0	= 25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	= 20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	± 25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	± 20,0	± 25.0

¹If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met
Criteria were not met
and/or see belowX

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:05/17/16_(SIM)	
Date of initial calibration verification (ICV):05/17-18/16	
Date of continuing calibration verification (CCV):_05/21/16;_05/23/16	_
Date of closing CCV:	Π
Instrument ID numbers:GCM3M	
Matrix/Level:Aqueous/low	
Date of initial calibration:04/29/16_(Scan)	_
Date of initial calibration verification (ICV):04/29/16;_05/02/16	_
Date of continuing calibration verification (CCV):05/18/16	_
Date of closing CCV:	_
nstrument ID numbers:GCMS3P	_
Matrix/Level:Aqueous/low	_
Date of initial calibration:04/12-13/16;_04/26-27/16_(Scan)	
Date of initial calibration verification (ICV):04/13/16;05/27/16	
Date of continuing calibration verification (CCV):05/19/16	_
Date of closing CCV:	_
nstrument ID numbers:GCMSM	
Matrix/Level:Aqueous/low	_
Date of initial calibration:05/24-25/16_(Scan)	_
Date of initial calibration verification (ICV):05/25/16	_
Date of continuing calibration verification (CCV):05/26/16	_
Date of closing CCV:	_
nstrument ID numbers:GCMS3E	_
Matrix/Level:Aqueous/low	

DATE	I	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMS3P				
05/19/16	cc2413-50	-24.8	Hexachlorobutadiene	JC20466-1; -2;-3
		-48.3	4-nitrophenol	
05/18/50	cc2414-50	-20.7	Atrazine*	
05/19/16	cc5217-50	-49.8	bis(2-chloroethyl)ether	
		-22.5	Hexachlorocyclopentadiene*	
		-33.7	2,4-dinitrophenol*	
		-27.7	4,6-Dinitro-2-methylphenol*	
		-38.0	pentachlorophenol*	
		-24.2	Indeno(1,2,3-cd)pyrene	
05/19/16	cc5239-50	-28.4	Atrazine*	JC20466-1; -2;-3

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except the cases describe in the list enclosed. Results qualified as estimated (J), (UJ) for non-detects.

No closing calibration verification included in data package. No action taken, professional judgment.

* Analytes with % difference in the continue calibration verification outside the method performance criteria but within the validation guidelines criteria, +40 %. No action taken.

GCMS3E used to analyze QC samples for this batch on 05/26/16. Continuing calibration verification did not meet the validation document performance criteria for several analytes. No qualification was performed on QC samples.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Criteria for Opening CCV	Critoria for Clasing COV	Action		
Citteria for Opening CCV	Criteria for Closing CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	UJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

Table 4. CCV Actions for Semivolatile Analysis

All criteria were met	_X
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE Analyzed	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
Field/Equipmen	/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/eq	juipment_blank	s_analyzed_wit	h_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method, TCLP/SPLP LEB, Field	≥ CRQL	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
		1	<u> </u>		

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES – DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Critaria	Action			
Criteria	Detect	Non-detect		
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R		
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J-	UJ		
Lower Acceptance limit $\leq \%R \leq Upper$ Acceptance Limit	No qualification	No qualification		
%R > Upper Acceptance Limit	J+	No qualification		

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:Groundwater		
SAMPLE ID	SURROGATE COMPOUND	ACTION
_DMCs_meet_the_require _within_laboratory_recove	ed_criteriaNon-deuterated_surrogates_addedery_limits	i_to_the_samples_were

DATA REVIEW WORKSHEETS

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-d ₈ (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1.4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
	Phenol	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
·	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane	4.51	Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dînîtrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d ₄ (DMC-10)	Acenaphthylene-ds (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nîtroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate		3.0
Bis(2-ethylhexyl) phthalate		
Di-n-octy/lphthalate		23

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*l/luoranthene	3,3'-Dichlorobenzidine	
*Pyrene	*Benzo(b)fluoranthene	
*Benzo(a)anthracene	*Benzo(k)fluoranthene	
*Chrysene	*Benzo(a)pyrene	
	*Indeno(1,2,3-cd)pyrene	
	*Dibenzo(a,h)anthracene	
	*Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaplithene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were metX
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC20413-1						Matrix/Level:Aqueous				
The QC reporte JC20466-1, JC2				wing sa	mples:			Method	: SW846	8270D
Compound	JC2014 ug/l	3-1 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
2,4-Dinitrophenol 4,6-Dinitro-o-cresol Phenol	ND		200 100 100	23.6 11.7 342	12* a 12* a 342* a	200 100 100	32.4 17.9 51.9	16* a 18* a 52	31* b 42* b 147* b	21-145/26 25-134/27 22-100/22
bis(2-Chloroethyl) ether Hexachloro-	ND		100	ND	0* c	100	ND	0* c	nc	42-123/28
cyclopentadiene Hexachloroethane Nitrobenzene	ND ND 1920 d		200 100 100	36.2 60.7 73.0	18 61 0* c	200 100 100	51.5 84.7 85.7	26 85 0* °	35* ^b 33* ^b 16	10-133/31 35-111/26 35-130/25

- (a) Outside control limits due to matrix interference.
- (b) Analytical precision exceeds in-house control limits.
- (c) Outside control limits due to high level in sample relative to spike amount.
- (d) Result is from Run #2.

^{*} Outside control limit.

DATA REVIEW WORKSHEETS

Note: No action taken, MS/MSD results apply to unspiked sample. Unspiked sample was from another project.

No MS/MSD performed for samples analyzed by the SIM technique. No action taken blank spike/blank spike duplicate used to assess accuracy.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _X
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

DATA REVIEW WORKSHEETS

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action		
Crieria	Detect	Non-detect	
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R	
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	IJ	
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification	
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J. 14	No qualification	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R	
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification	

		All criteria were metX Criteria were not met and/or see below
TARGET COM	POUND IDENTIFICATION	
Criteria:		
		unds within ±0.06 RRT units of the standard /) or mid-point standard from the initial Yes? or No?
List compound	s not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum from	the associated calibration standard (open ast match according to the following criteria: All ions present in the standard mass spec must be present in the sample spectrum. The relative intensities of these ions must a sample spectra (e.g., for an ion with an all the corresponding sample ion abundance in lons present at greater than 10% in the sa	poratory-generated standard [i.e., the massing CCV or mid-point standard from initial trum at a relative intensity greater than 10% agree within ±20% between the standard and bundance of 50% in the standard spectrum, must be between 30-70%). Imple mass spectrum, but not present in the year reviewer experienced in mass spectral
List compound	s not meeting the criteria described above:	
Sample ID	Compounds	Actions
ldentified_con	npounds_meet_the_required_criteria	

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

LIST	ı	IUS

Sample ID	Compound	Sample ID	Compound
	-5.00		

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- 3. In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".

DATA REVIEW WORKSHEETS

- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _X
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	A	ction
Criteria	Detects	Non-detects
%Solids < 10.0%	Use professional judgment	Use professional judgment
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment
%Solids > 30.0%	No qualification	No qualification

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID:	_ JC2046	6-1 Analyte:1,4-dioxane	RF:_0.555_
[]	=	(214725)(40)/(361668)(0.555)	
	=	42.79 ppm Ok	

DATA REVIEW WORKSHEETS

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION	REASON FOR DILUTION
JC20466-1	5X	1,4-Dioxane over the calibration range
JC20466-2	5X	1,4-Dioxane over the calibration range
JC20466-3	10X	1,4-Dioxane over the calibration range
14		
	12	

All criteria were metN/A	
Criteria were not met	
and/or see below	

FIELD DUPLICATE PRECISION

Sample IDs:	JC20466-1/JC20466-2	Matrix:	Groundwater_	

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: if large RPD (> 50 %) is observed, confirm identification of the samples and note differences. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Field duplicate at detected target at		part of this da	ta package. RPD withi	n the requir	ed criteria < 50 % for

All criteria were metX	
Criteria were not met	
and/or see below	

OTHER ISSUES

List samples qualifie	ed based on the degradation of system	performance during simple analysis:
Sample ID	Comments	Actions
	-	
Action:		
Use professional jud during sample ana		mined that system performance has degrade by Program COR any action as a result of ected the data.
Use professional juduring sample ana degradation of systems	lyses. Inform the Contract Laborate	ry Program COR any action as a result of
Use professional juduring sample and degradation of systems. B. Overall Asset	lyses. Inform the Contract Laborate em performance which significantly af	ry Program COR any action as a result of

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be
 multiple results for a single analyte from a single sample. The following criteria and professional
 judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC20466

Laboratory:

Accutest, Florida

3

Analysis:

SW846-8015C

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Three (3) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary

guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

June 11, 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC20466-1

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC20466-2

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	•	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	•	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	UJ	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	•	U	Yes

Sample ID: JC20466-3

Sample location: BMSMC Building 5 Area

Sampling date: 5/17/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0		U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyi Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	-	Yes

	Project Number:JC20466
	Date:05/17/2016
	Shipping Date:05/17/2016
	EPA Region:2
REVIEW OF VOLATILE Of The following guidelines for evaluating volatile organics were document will assist the reviewer in using professional judg serving the needs of the data users. The sample results a guidance documents in the following order of preceder Physical/Chemical Methods SW-846 (Final Update III, Deceare utilized. The QC criteria and data validation actions lister guidance document, unless otherwise noted. The hardcopied (laboratory name) _Accutest and the quality control and performance data summarized. The	RGANIC PACKAGE e created to delineate required validation actions. This gment to make more informed decision and in better were assessed according to USEPA data validation nce: "Test Methods for Evaluating Solid Waste, ember 1023R)," specifically for Methods 8000/8015C d on the data review worksheets are from the primary data package received has been reviewed
Lab. Project/SDG No.:JC20466 No. of Samples:3	Sample matrix:Soil/Groundwater
Trip blank No.:	
Field blank No.:	
Latingsont block bio :	
Field duplicate No.:JC20466-1/JC20466-2	
X Data CompletenessX Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_Selected_low_molecular_weight_a	lcohols_by_SW-846_8015C
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondeteod Reviewer: An Ayant	
Date:June_11,_2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		- X
		200_28_V
3		
2,000		
		3

All criteria were met _X
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
Samples analyzed	within the holding tir	ne. All samples properly	preserve	ed.
]		714		

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 4.9°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

All criteria were metN/	_
Criteria were not met see below	_

GC/MS TUNING

If mass calibration is in error, all associated data are rejected.

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

	Date of initial calibration:	05/17	'/16	
	Dates of initial calibration veri	fication:05/17	//16	
	Dates of continuing calibration	n verification:05/19/	16	
	Dates of final calibration verifi	ication:05/19/	16	
	Instrument ID number:	GCGH_		
	Matrix/Level:	Aqueous/lo)WW	
		31,	0 8	
DATE	LAB FILE ID# CRITERIA OUT	COMPOUND	SAMPLES	
	1	_		- 1

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED

Note: Initial, continuing, and final calibration verifications meets method specific requirements in at least one of the two columns.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be \leq 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	X	
Criteria were not met		
and/or see below		

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL! MATRIX	COMPOUND	CONCENTRATION UNITS
			ic_criteria	
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
		YUM	7 100	
			72	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
				,	,

All criteria were met	_X	
Criteria were not met		
and/or see below	_	

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID	S	URROGATE	COMPOUND		ACTION	
Hexan	ol D E	FM	TOL-d8	BFB		
_All_surrogate_recoveries	_within_labor	ratory_contro	l_limits			_
						_
				92.		
QC Limits* (Aqueous)LL_to_UL	3_to_123_	to	to	to		
LL_to_UL5 QC Limits* (Solid-Med)	2_to_141	to	to	to	_	
LL_to_UL ´	to	to	to	to	•	
1,2-DCA = 1,2-Dichlorome DBFM = Dibromofluorome				Toluene-d8 mofluorobenze	ne	
* QC limits are labor * If QC limits are not samples.	-	•	•	-	* *	olid
Actions:						
QUALITY	%	R < 10%	%R = 10%	- LL %R >	· UL	
Positive results	J		J	J		
Nondetects result	s R		UJ	Acce	pt	

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were metX	
Criteria were not met	_
and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC	20147-13MS/-MSD_		_	Matrix	Level:Aqueous_	- 1
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re 	ecoveries_and_RPD_	within_lab	oratory_	control_limits		
	3,230					

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

All criteria were met	X
Criteria were not met	
and/or see below	

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
-					

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT	
Recoverie	es_within_labor	ratory_control_limits		· · · · · ·	
					_
					_
Note:					

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

qualify data accordingly. Discuss any actions below and list the samples affected.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and

Sample IDs:

All criteria were metX Criteria were not met and/or see below					
Matrix:_	Groundwater				

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

FIELD/LABORATORY DUPLICATE PRECISION

___JC20466-1/JC20466-2___

Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Field duplicate	e analyz	-	ckage. RPD within labor control limits.	atory an	d generally acceptable

Actions:

IX.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metN/A	
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION	
						_
	-					_
			72			-
						_
						_
						_

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

2. If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _X
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC20464-1

Hexanol

RF = 67.60

[] = (295051)/(67.60)

= 4,365 ppm OK

All criteria were met _X	
Criteria were not met	
and/or see below	

XII.	QU	IAN	TII	AT	ION	LIMITS	S

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
\\		

Percent Solids
List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)